WE-E-213CD-09: Multi-Atlas Fusion Using a Tissue Appearance Model.

نویسندگان

  • J Yang
  • A Garden
  • Y Zhang
  • L Zhang
  • L Court
  • L Dong
چکیده

PURPOSE To improve multi-atlas based auto-segmentation by integrating a tissue appearance model with the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm to perform multi-atlas fusion. METHODS Ten head-and-neck planning CT images were acquired (resolution: 1.0×1.0×2.5mm3 ) and the parotid glands were contoured manually by a head-and-neck oncologist. We performed 10 leave-one-out tests by using one patient as test patient and the rest of 9 patients as atlases. Deformable registration was first applied to transform the atlas parotid contours to the test image one by one. The STAPLE algorithm was initialized by a parotid tissue appearance model, which was estimated from the test image and encoded the intensity information of parotid glands. The individual deformed contours were then fused using the STAPLE algorithm to produce a best approximation of the true contour. The tissue appearance model was also applied to a deformable model segmentation to further refine the fused contours. RESULTS The multi-atlas fusion using the tissue appearance model produced an average Dice coefficient of 85.2%±3.1% (left parotid) and 84.9%±3.9% (right parotid) over the 10 tests between the auto-contour and the manual contour, and an average mean surface distance of 1.6±0.3mm and 1.6±0.4mm for left and right parotids respectively. This demonstrated a good agreement between the manual contours and the auto- delineated contours. Our results also showed that, without using the tissue appearance model, the auto-delineated parotid contours might include nearby bony structures; however, using the appearance model was able to correct this problem. CONCLUSIONS Including the intensity information using a tissue appearance model into STAPLE algorithm for multi-atlas fusion showed improvement in refining the anatomical boundaries in the multi- atlas based auto-segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Multi-Atlas Label Fusion: Application to Cardiac MR Images

Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a novel multi-atlas segmentation method that formulates multi-atlas segmentation in a deep learning framework for better solving these challenges. T...

متن کامل

Multi-atlas segmentation with augmented features for cardiac MR images

Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods ...

متن کامل

An automatic multi-atlas based prostate segmentation using local appearance-speci c atlases and patch-based voxel weighting

Prostate segmentation facilitates prostate cancer detection and can help to diagnose the pathological stage of disease. Segmented anatomical models may also help to improve the outcome of robotic-aided laparoscopic prostatectomy (RALP) by augmented reality image guidance. In this paper, we present a fully automated segmentation pipeline for multi-center and multi-vendor MRI prostate segmentatio...

متن کامل

Shape-constrained multi-atlas based segmentation with multichannel registration

Multi-atlas based segmentation methods have recently attracted much attention in medical image segmentation. The multi-atlas based segmentation methods typically consist of three steps, including image registration, label propagation, and label fusion. Most of the recent studies devote to improving the label fusion step and adopt a typical image registration method for registering atlases to th...

متن کامل

A Generative Model for Brain Tumor Segmentation in Multi-Modal Images

We introduce a generative probabilistic model for segmentation of tumors in multi-dimensional images. The model allows for different tumor boundaries in each channel, reflecting difference in tumor appearance across modalities. We augment a probabilistic atlas of healthy tissue priors with a latent atlas of the lesion and derive the estimation algorithm to extract tumor boundaries and the laten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part27  شماره 

صفحات  -

تاریخ انتشار 2012